

extCZIP®-PRO

extCZIP®-2R-PRO

PROTECTION RELAY

DIGITAL PROTECTION, AUTOMATION, MEASUREMENT,
CONTROL, RECORDING AND COMMUNICATION

- Underimpedance protection against phase faults in MV lines. An alternative to conventional overcurrent protection in cases where selective coordination and the required sensitivity cannot be achieved.
- Allows measurement using low-power measurement transformers CR/CRR.
- extCZIP®-PRO extended version of the CZIP® system**
 - flexibility to choose the number of available input and output ports,
 - additional communication ports.

extCZIP®-PRO

extCZIP®-2R-PRO

PROTECTION RELAY

extCZIP®-PRO digital protection relays for medium voltage switchgear and extCZIP®-2R-PRO automatic transfer switch system are new versions of devices belonging to the CZIP® system. The extCZIP®-PRO series protection relays are characterized by great flexibility in choosing the number of available input, output and communication ports.

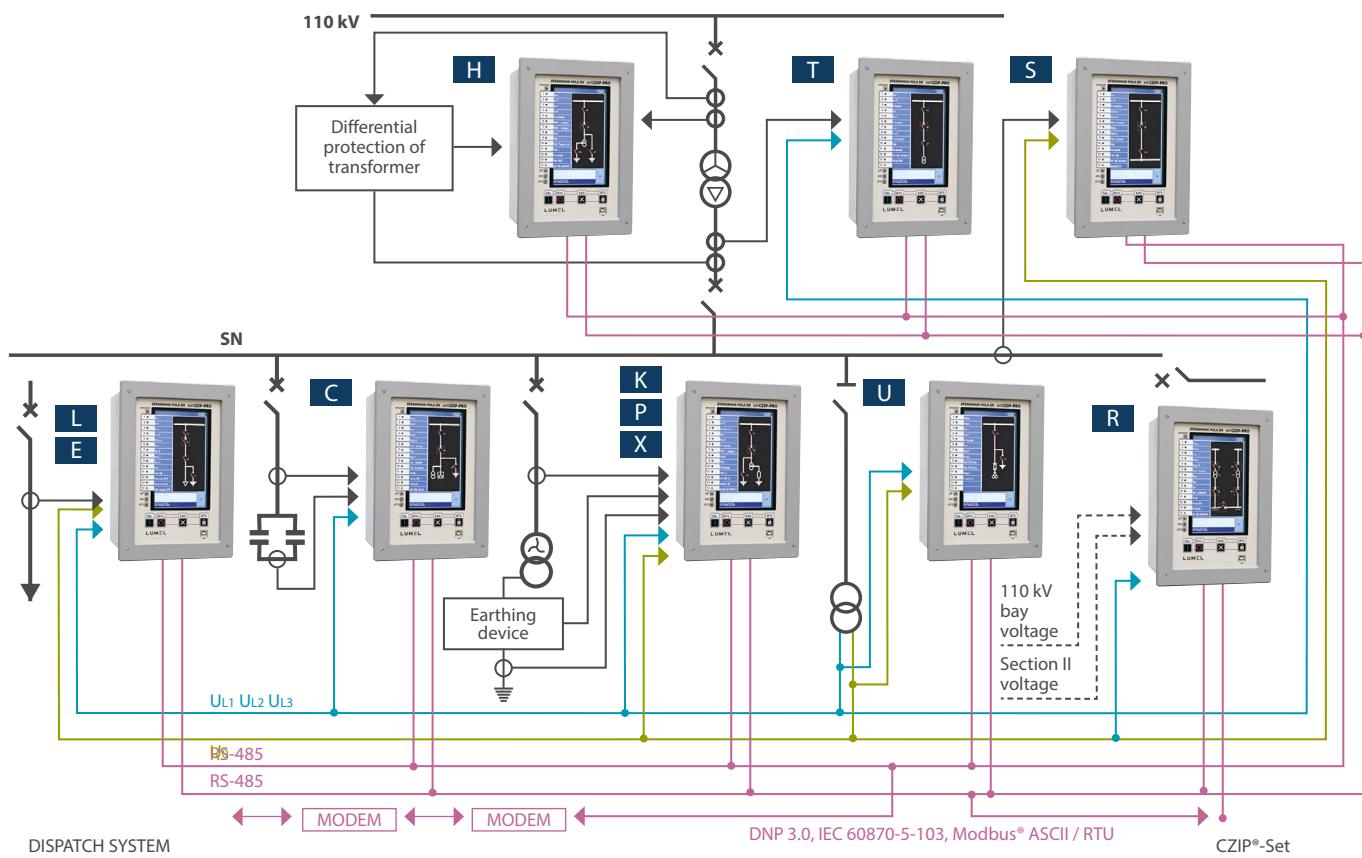
The CZIP® system devices are 100% Polish products, developed in cooperation with the Institute of Electrical Power Engineering of the Poznań University of Technology.

- extCZIP®-PRO – digital protection relay for MV switchgear for power utilities and industrial facilities
- extCZIP®-2R-PRO – ATS system implementation (automation transfer switch) for MV switchgear
- CZIP®-Set – utility software for operating all CZIP® system devices, including extCZIP®-PRO

Unique protection functions of the CZIP® system

- **underimpedance protection against phase faults**
- detection of high-impedance earth faults (up to 8 kΩ),
- selective protection against earth faults in earthing transformer bays and earthing circuits.

CHARACTERISTICS


- software for all MV (medium voltage) substation bays in one extCZIP®-PRO device,
- ATS system (automatic transfer switch) implemented in extCZIP®-2R-PRO,
- predefined settings of the protection functions and automation systems,
- **programmable logic support (50),**
- colour LCD TFT 7" screen, 800x480, with a touch panel,
- bay synoptic diagram presentation with mapping of the switch states,
- switch control from the synoptic screen and using telemechanics (up to 11 switches),
- presentation of the recorded events, measurement values and input or output states,
- **28 or 56 opto-isolated binary inputs,**
- **20 or 40 output relays,**
- 14 bi-colour programmable LEDs, with on-screen description,
- ON and OFF buttons – to control the bay circuit breaker from the device keyboard,
- 512 MB internal memory for recording samples of disturbance recorder, event recorder, energy measurements,
- time synchronization via Ethernet network using SNTP
- independent communication interfaces: USB, 2 x RS-485, Ethernet 10/100 BASE-TX
(optional fibre optic port and **CAN-BUS/RS-485**),
- communication protocols: DNP 3.0, IEC 60870-5-103 and 104, IEC 61850, Modbus® ASCII / RTU
(optional PPM2 protocol on **CAN-BUS/RS-485 port**),
- 2-bit status monitoring of all switches,
- optional phase current measurement inputs adapted for operation with low-power current transformers based on Rogowski coils.

extCZIP®-PRO

extCZIP®-2R-PRO

PROTECTION RELAY

CONNECTION DIAGRAM

FUNCTIONS

Protection functions	L	E	Z	T	C	K	P	X	U	S	H	R
Three-stage overcurrent protection against phase faults	• ¹	• ¹	• ¹									
Directional protection for each stage of overcurrent protection	•	•	•									
Current asymmetry criterion based on the negative sequence current component	•	•	•				•	•	•			
Instantaneous switch onto fault protection	•	•	•				•	•	•	•	•	•
Underimpedance protection against phase faults	•	•	•									
Earth-fault overcurrent	•	•	•				•	•	•	•	•	•
Residual overvoltage as start-up element for other protection functions	•	•	•				•	•	•	•	•	•
Residual overvoltage as autonomous criterion							•	•	•	•	•	•
Earth-fault overcurrent in the neutral point's earthing circuit							•	•	•			
Earth-fault admittance							•	•	•			
Earth-fault admittance incremental							•	•	•			
Earth-fault conductance (directional and non-directional)	• ⁴	• ⁴	• ⁴				•	•				• ²
Earth-fault susceptance directional	•	•	•									
Wattmetric-based earth-fault IOP>												
Adaptive earth-fault conductance RG0adapt. (detection of high-impedance faults)	•	•	•									
Overfrequency				• ³	• ³							
Underfrequency				• ³	• ³							
Rate of change of frequency df/dt				• ³	• ³							
Overcurrent busbar protection blocking element	•	•	•				•	•	•	•	•	
Directional protection for overcurrent busbar protection blocking element	•	•	•				•	•	•	•	•	
Overcurrent relay cooperating with busbar protection												•
Decision element of busbar protection							•	•				
Selective protection against earth faults in earthing transformer and earthing circuit							•	•	•			

extCZIP®-PRO

extCZIP®-2R-PRO

PROTECTION RELAY

Protection functions	L	E	Z	T	C	K	P	X	U	S	H	R
Overvoltage			• ³	• ³	•	•						
Undervoltage			• ³	• ³	•	•						
Overload overcurrent					•	•						•
Time-delay overcurrent against phase faults							•					
Overcurrent against internal faults							•					
Phase overvoltage (criterion: phase-to-phase voltage)										•		
Phase undervoltage (criterion: phase-to-phase voltage)										•		
Overcurrent-logic busbar protection					•	•					•	
Short-circuit overcurrent against internal phase faults							•	•	•	•		•
Directional overpower P3>				•	•							
Directional overpower Q3>				•	•							
Voltage asymmetry						•						
Automation systems	L	E	Z	T	C	K	P	X	U	S	H	R
Automatic reclosing	•	•	•									
Circuit breaker failure protection				•	•					•		
Capacitor bank controller					•							
Capacitor bank switching automation (clock)						•						
Underfrequency load shedding - 3 stages									•			
Distributed underfrequency load shedding (applied for line bays)				•	•							
Underfrequency load shedding and restoration									•			
Active current forcing scheme with a controller							•					
Resistor controller								•				
Others	L	E	Z	T	C	K	P	X	U	S	H	R
Cooperation with underfrequency load shedding automation or underfrequency load shedding and restoration system	•	•	•									
Cooperation with circuit breaker failure protection	•	•	•		•	•	•	•	•			•
Cooperation with automatic transfer switch			•	•			•	•	•	•	•	•
Operation of automatic transfer switch function for both hot and cold reserve configurations												•
Cooperation with gas detector relay					•		•	•	•			
Cooperation with external differential protection												•
Second harmonic bias for phase overcurrent protection	•	•										
Synchronism check function when switching on a line with distributed generation	• ⁵	• ⁵										

¹ Settings' change possible after operational switching of the first, second or third stage.

² Non-directional.

³ With separate automatic reclosing system.

⁴ Built-in adaptive algorithm supporting effective detection of high-impedance earth faults.

⁵ Optional function.

● extCZIP®-PRO purpose by bay

- █ L line bay without local power plant
- █ E line bay with local power plant (also wind power)
- █ Z incoming/ outgoing feeder bay
- █ T MV side of the 110 kV/MV transformer
- █ C capacitor bank
- █ K auxiliary services in compensated networks (also networks with an insulated neutral point)
- █ P auxiliary services in networks with resistor-earthed neutral point
- █ X auxiliary services in networks with parallel reactor – resistor earthing system
- █ U voltage measurement
- █ S busbar coupler
- █ H 110 kV side of the 110 kV/MV transformer

● extCZIP®-2R-PRO purpose

- █ R ATS system (automatic transfer switch)

extCZIP®-PRO

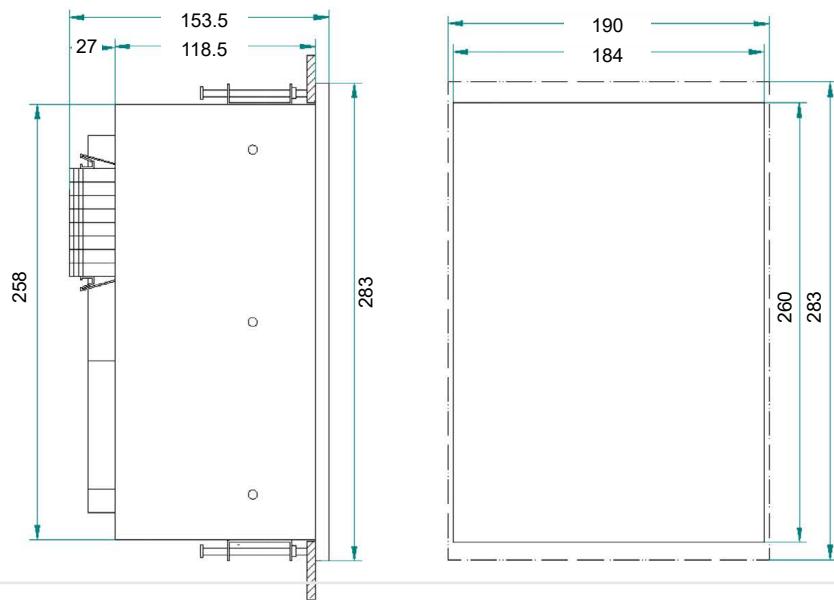
extCZIP®-2R-PRO

PROTECTION RELAY

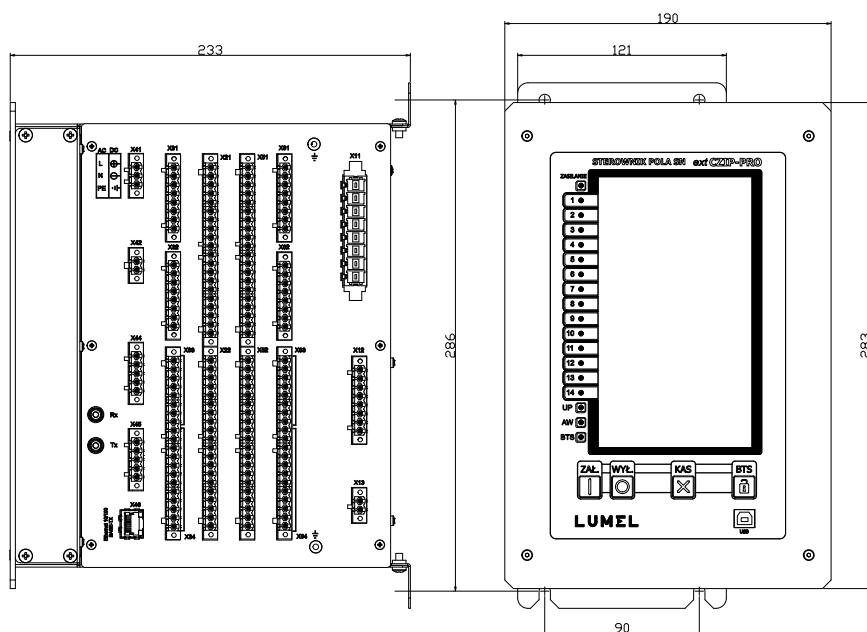
TECHNICAL DATA

Phase current inputs		Output relays		
CURRENT TRANSFORMERS		Rated voltage		
Rated current I_n	5 A or 1 A	220 V		
Current range	0...200 A	24 V		
Measurement error	0 A > 0,35...50 A < 200 A < 10% < 1,5% < 10%	Continuous current carrying capacity		
Rated frequency f_n	50 Hz	5 A		
Power consumption at $I=I_n$	< 0,5 VA	Breaking capacity of the induction circuit		
LOW-POWER CURRENT TRANSFORMERS CR/CRR		• 220 V DC, L/R = 40 ms		
Current range	0,1A...150kA	0,1 A		
Measurement Circuit Resistance	50 kΩ	• 220 V AC, $\cos \varphi = 0,4$		
Phase voltage inputs		2 A		
Rated voltage U_n	100 V	Circuit breaker connection circuits		
Voltage range	0...130 V	Rated voltage		
Measurement error in the measurement range	< 1,5%	220 V		
Rated frequency f_n	50 Hz	24 V		
Power consumption at $U=U_n$	< 0,4 VA	Continuous current carrying capacity		
Zero-sequence current inputs		8 A		
Rated current I_{0n}	0,5 A	Breaking capacity of the induction circuit		
Current range	0...5 A	• 220 V DC, L/R = 40 ms		
Measurement error	0,02...3,5 A	1,2 A / 300 cycles		
Rated frequency f_n	50 Hz	Duration of the switch-off impulse		
Power consumption at $I=I_{0n}$	< 0,4 VA	min. 0,1 s		
Zero-sequence voltage inputs		Duration of the switch-on impulse		
Rated voltage U_{0n}	100 V	min. 0,1 s		
Voltage range	0...130 V	Other data		
Measurement error in the measurement range	< 1,5%	Power supply		
Rated frequency f_n	50 Hz	• nominal auxiliary voltage		
Power consumption at $U=U_{0n}$	< 0,4 VA	220 V DC 90...220...300 V	230 V AC 85...230...265 V	24 V DC 19...24...65 V
Binary inputs		• auxiliary power consumption		
Rated input voltage	24 V	< 20 W		
Input voltage range	17...32 V	Environmental conditions		
Current drain	< 3 mA	• operating temperature		
		-10...+55°C		
		• storage temperature		
		-20...+70°C		
		• altitude		
		≤ 2000 m		
		• relative humidity		
		5...95%		
		Weight		
		6 kg		
		Dimensions		
		283 x 190 x 153,5 mm backboard version		
		283 x 190 x 233 mm onboard version		
		Case protection degree		
		IP 50		

extCZIP®-PRO


extCZIP®-2R-PRO

PROTECTION RELAY


DIMENSIONS

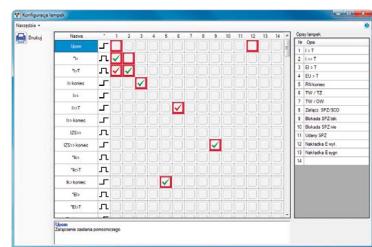
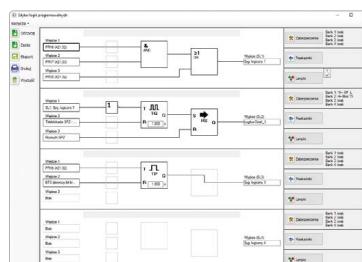
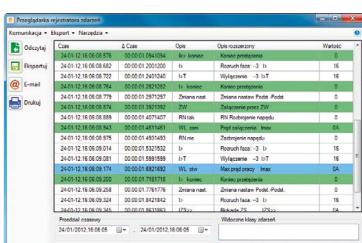
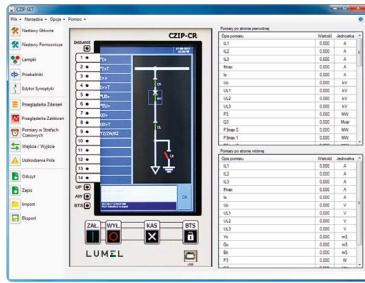
Backboard version

Dimensions of the hole in the mounting plate

Onboard version

Holes with a diameter of 6,5 mm
for mounting on the board
using 4 M5 screws

extCZIP®-PRO





extCZIP®-2R-PRO

PROTECTION RELAY

CZIP®-SET extCZIP®-PRO software

- software supplied with extCZIP®-PRO devices,
- excellent engineering tool supporting the user in specifying settings, configuring all available parameters, checking current configuration, measurement data and event recorder,
- a module enabling reading of samples saved in the disturbance recorder and their comprehensive analysis is also included in the software package,
- the tool includes a programmable logic editor, which enables adaptation of the extCZIP®-PRO device to individual needs and solutions,
- software enables communication with extCZIP®-PRO devices via RS-485 serial ports, optical fiber, USB, Ethernet,
- comparator of configuration files,
- synoptic editor - standard connectors + 11 configurable ones,
- remote control of MV and LV switches via Ethernet (VPN).

LUMEL S.A.
ul. Lubicka 4,
65-127 Zielona Góra, Poland
tel.: +48 68 45 75 100

Technical support:
tel.: (+48 68) 45 75 143,
45 75 141, 45 75 144, 45 75 140
e-mail: export@lumel.com.pl

Export department:
tel.: (+48 68) 45 75 130,
45 75 131, 45 75 132
e-mail: export@lumel.com.pl

Calibration & Attestation:
e-mail: laboratorium@lumel.com.pl

W.012026